Stereochemistry of the Electrophilic Addition of Bromine to Dibenzo[b,f]thiepin and its 5,5-Dioxide

By Mihály Nógrádi, W. David Ollis,* and lan O. Sutherland, Department of Chemistry, The University, Sheffield S3 7HF

Abstract

The dibromide formed by kinetically controlled bromine addition to dibenzo [b,f]thiepin (3) is the trans-isomer (5). Treatment of this product with methanolic sodium methoxide gives the bromo-ene (1) together with products resulting from substitution and rearrangement reactions, but the reaction with potassium t -butoxide in t -butyl alcohol gives only the bromo-ene (1). Bromine addition to the sulphone (2) in carbon tetrachloride gives the cis-dibromide whereas in acetic acid the trans-dibromide is obtained. The acid-catalysed dehydration and rearrangement of 9 -hydroxymethylthioxanthen (18) proceeds abnormally under anhydrous conditions in toluene giving 10.11-dihydro-10-p-tolyldibenzo [b,f]thiepin (19).

We required 10 -bromodibenzo $b, f]$ thiepin (1) as an intermediate in the synthesis of compounds for conformational studies. ${ }^{1}$ Since it had been reported ${ }^{2}$ that the sulphone analogue (2) could be converted into the 10-bromo-derivative by bromine addition followed by dehydrobromination we investigated the use of a similar reaction sequence with dibenzo[b,f]thiepin (3).

(1) $X=B r$
(3) $X=H$

(2)

The reaction of the thiepin derivative (3) with bromine in dichloromethane at room temperature was complete in a few minutes and gave both the cis- and the transdibromide [(4) and (5)], which could be separated by fractional crystallisation. The molecular formulae of these products (elemental analysis and mass spectrum) were consistent with these structures but stereochemical assignments could not be made directly: the isomers are designated A (m.p. 145°) and B (m.p. 139°) in the discussion that follows. Bromine addition in dichloromethane at -70° gave a product ratio (A : B) of 93:7; $c f .2: 1$ at room temperature. The use of acetic acid as the solvent at room temperature gave the dibromide A exclusively. The n.m.r. spectrum of the mixed products shows two singlet signals assignable to the C-10 and C-11 protons (isomer A, $\tau 4 \cdot 12$; isomer $B, \tau 3.55$). The temperature and solvent dependence of the product ratio and the observation that either of the pure isomers reverts to the equilibrium mixture when kept in solution in the presence of hydrogen bromide \dagger indicate that the dibromide A is the kinetically favoured product.

[^0]The cis- rather than trans-addition of halogen has frequently been demonstrated in cyclic systems, and mechanistic interest in the stereochemical aspects of such electrophilic additions continues., It was therefore of interest to determine the configuration of the dibromides A and B, since the results could be related to the dibromoderivatives of analogous compounds. This stereochemical assignment could be made with certainty in the case of the thiepin derivatives by the examination of the n.m.r. spectra of the corresponding sulphones and sulphoxides as described below.

The cis-10,11-dibromo-10,11-dihydrodibenzothiepin (4) can give rise to a pair of epimeric sulphoxides (6a) and (6 b) which differ in the relative dispositions of the bromine atoms and the oxygen atom. The compounds (4), (6a). and (6 b) all have a plane of symmetry rendering the $\mathrm{C}-10$ and C-11 protons enantiotopic and hence magnetically. equivalent. The n.m.r. spectrum of the mixture of sulphoxides derived from the cis-dibromide (4) should therefore show singlets of unequal intensity in the region of benzylic proton resonance. Further oxidation of this mixture of sulphoxides (6 a and b) would give a single sulphone (8).

The trans-10,11-dibromo-10,11-dihydrodibenzothiepin (5) has C_{2} symmetry and the protons at $\mathrm{C}-10$ and $\mathrm{C}-11$ would therefore be equivalent (homotopic). \ddagger Since the two faces of the molecule are also equivalent, only one sulphoxide (7) can be produced on oxidation. In this sulphoxide (7) the axis of symmetry, present in (5), is absent in (7) so that its benzylic protons are rendered diastereotopic and are expected to be associated with an

[^1]AB system in its n.m.r. spectrum. Further oxidation of (7) to the sulphone (9) restores the C_{2} symmetry and the equivalence of the benzylic protons would again be expected to give a singlet n.m.r. signal.

The n.m.r. spectra (see Experimental section) of the sulphoxides (6a), (6b), and (7) and the sulphones (8) and (9) derived from the individual 10,11-dibromodibenzothiepins (4) and (5) showed all the features described above and permitted the assignment of the trans-configuration (5) to the kinetically favoured product (A).

(4) $X=H, Y=B r$ (Isomer B)
(6a) $W=Z=H, X=Y=B r$ (5) $X=B r, Y=H$ (isomer A)
(7) $W=Z=B r, X=Y=H$

(8) $X=H, Y=B r$
(10)
(9) $X=B r, Y=H$

The reactivity of the 10,11 -dibromides (4) and (5) is in accord with the above conclusions. From the examination of models, an antiperiplanar relation between a pair of hydrogen and bromine substituents is realised only in each of the twist-boat conformations [e.g. (10)] of the cis-compound, but no such arrangement is possible with any conformer in the trans-series. The boat conformation (11) is related to the transition state for synperiplanar elimination from the trans-compound, but this is expected to be a higher energy pathway for elimination owing to torsional strain and angle strain in this conformation (11). It is therefore not surprising that the

cis-dibromide (4) gives exclusively the elimination product (1) on treatment with methanolic sodium

[^2]methoxide, whereas the trants-dibromide (5) yields, in addition to the olefin (1), products (12) and (13) that appear to result from either rearrangement of an intermediate carbonium ion or competing nucleophilic displacement reactions. The formation of thioxanthen-9carbaldehyde dimethyl acetal (12) can be rationalised on this basis, and it appears reasonable that the ring contraction reaction (15) \rightarrow (16) involves the carbonium ion derived from the methoxy-bromide ($15 ; \mathrm{X}=\mathrm{OMe}$) obtained after initial displacement of one of the bromine atoms by methoxide. The methoxy-bromide (15) could also reasonably give rise to the mixture of diastereomers (13) * by simple nucleophilic attack without rearrangement. The ring contraction reaction of 5,6 -dibromo- 5,6 dihydrodibenzo $[a, d]$ cyclo-octene under similar conditions has previously been reported. ${ }^{6}$ With potassium t butoxide in t-butyl alcohol the initial nucleophilic displacement is prevented and only the elimination product (1) is formed. The rearrangement of (5) has also been observed under other conditions: on one occasion thioxanthen-9-carbaldehyde (17) [M226; $v_{\mathrm{O}=\mathrm{o}} 1720 \mathrm{~cm}^{-1}$, $\div 0.60(\mathrm{~d}, J 2 \mathrm{~Hz},(\mathrm{H}-\mathrm{CHO})]$ was formed from the transdibromide (5) during chromatography on silica gel.

(15)

(16)

(17) $\mathrm{R}=\mathrm{CHO}$
(18) $\mathrm{R}=\mathrm{CH}_{2}{ }^{\circ} \mathrm{OH}$

The addition of bromine to dibenzo[b,f]thiepin 5,5dioxide (2) also takes a solvent-dependent course. Thus the reaction of the sulphone (2) with bromine in boiling carbon tetrachloride gives a cis-dibromide, ${ }^{2}$ m.p. 206$208^{\circ}$, identical with a sample of the sulphone (8) prepared by the oxidation of the cis-dibromodibenzothiepin (4). On the other hand the sulphone (2) with bromine in acetic acid at room temperature gives the trans-dibromide (9), m.p. $170-172^{\circ}$, identified by comparison with a sample prepared from the trans-dibromodibenzothiepin (5).

Related studies on the electrophilic addition reactions of dibenz[b,f]oxepin (3; O for S) have been reported. ${ }^{7}$ This heterocycle with bromine in chloroform-ether gave one isolable 10,11 -dibromide but its configuration was not determined. ${ }^{7}$

Dibenzo[b,f]thiepin (3) was prepared (with slight

[^3]modification of the published procedure ${ }^{8}$) by treatment of 9 -hydroxymethylthioxanthen (18) with toluene- p sulphonic acid hydrate in boiling toluene. When this reaction was carried out under anhydrous conditions (Dean-Stark apparatus) then a major product was obtained in addition to the expected dibenzo[b,f]thiepin (3). This was identified as the p-tolyl derivative (19) $\left[M 302, \mathrm{ABC}\right.$ system in the n.m.r. spectrum, $\tau_{\mathrm{A}} 5 \cdot 31$, $\left.\tau_{\mathrm{B}} 5 \cdot 75, \tau_{\mathrm{C}} 6.32\left(J_{\mathrm{AB}} 10, J_{\mathrm{BO}} 14, J_{\mathrm{AC}} 4 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \cdot \mathrm{CH}_{\mathrm{B}} \mathrm{H}_{\mathrm{C}}\right)\right]$. The formation of this product (19) is apparently a result of the electrophilic activity of the intermediate carbonium ion under anhydrous reaction conditions.

EXPERIMENTAL

cis-10,11-Dibromo-10,11-dihydrodibenzo[b,f]thiepin (4).Bromine $(3.81 \mathrm{~g})$ was added to a solution of the dibenzothiepin (3) ${ }^{8}(5 \cdot 0 \mathrm{~g})$ in dichloromethane (50 ml), and after 15 min the solution was evaporated. The residue crystallised on treatment with light petroleum giving a mixture of the dibromides (4) and (5) ($7.9 \mathrm{~g}, 91 \%$) shown by n.m.r. analysis to contain about 65% of the dibromide (5). The mixture was allowed to crystallise by slow evaporation of a solution in benzene to give pure trans-dibromide (5) as plates, m.p. 145°. The addition of light petroleum to the mother liquors resulted in the slow crystallisation of the cis-dibromide (4) (0.6 g), m.p. 139°, from benzene (Found: C, $45 \cdot 2 ; \mathrm{H}, 2 \cdot 8 ; \mathrm{S}, 8.5 \% ; M, 370 . \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{~S}$ requires C, $45.4 ; \mathrm{H}, 2.7 ; \mathrm{S}, 8.7 \% ; M, 370$); $\tau 2.50-2.90(\mathrm{~m}, 8$ aromatic H) and $3.55(\mathrm{~s}, \mathrm{CHBr} \cdot \mathrm{CHBr})$.
trans-10,11-Dibromo-10,11-dihydrodibenzo[b,f]thiepin (5). -Bromine (2.08 g) was added to a solution of the dibenzothiepin (3) (2.6 g) in acetic acid (26 ml) at room temperature. The crystalline product that separated from the solution ($3.2 \mathrm{~g}, 73 \%$) was recrystallised from t-butyl alcohol giving the trans-dibromide (5) as plates, m.p. 145° (Found: C, $\mathbf{4 5 \cdot 3}$; $\mathrm{H}, \mathbf{2 . 6}$; $\mathrm{Br}, \mathbf{4 4 . 0} ; \mathrm{S}, \mathbf{9 . 0} \%$; $M, 370 . \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{~S}$ requires $\mathrm{C}, 45 \cdot 4 ; \mathrm{H}, 2.7 ; \mathrm{Br}, 43 \cdot 2 ; \mathrm{S}, 8.7 \% ; M, 370)$; $\div 2.44-2.90(\mathrm{~m}, 8$ aromatic H$)$ and $4.12(\mathrm{~s}, \mathrm{CHBr} \cdot \mathrm{CHBr})$.
cis-10,11-Dibromo-10,11-dihydrodibenzo[b,f]thiepin 5-Oxide (6).-Peroxylauric acid ${ }^{9}(160 \mathrm{mg})$ was added at 0° to a solution of the cis-dibromide (4) (200 mg) in benzene $(2.5 \mathrm{ml})$ and the solution was kept overnight at room temperature. Evaporation and treatment of the residue with light petroleum gave a crystalline mixture of the sulphoxides (6 a and b) shown by n.m.r. analysis to contain ca. 85% of the major isomer. Recrystallisation from benzene gave the major isomer (6) as prisms (100 mg), m.p. $146-148^{\circ}$ (Found: C, $43.6 ; \mathrm{H}, 2.7$; $\mathrm{S}, 8.4 . \quad \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{OS}$ requires $\mathrm{C}, 43.45 ; \mathrm{H}$, $2 \cdot 6 ; \mathrm{S}, 8 \cdot 3 \%)$; $\tau\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2 \cdot 15-2 \cdot 60(\mathrm{~m}, 8$ aromatic H$)$ and $3 \cdot 16(\mathrm{~s}, \mathrm{CHBr} \cdot \mathrm{CHBr})$. The mixture also showed n.m.r. absorption (ca. 15%) assignable to the minor isomer (6) τ $3 \cdot 20(\mathrm{~s}, \mathrm{CHBr} \cdot \mathrm{CHBr})$ but this was not isolated.
trans-10,11-Dibromo-10,11-dihydrodibenzo[b,f]thiepin 5Oxide (7).-This was prepared in a similar manner to the cis-dibromide (6) from the trans-dibromothiepin derivative (5) (200 mg), giving the sulphoxide (7) as prisms, m.p. 141$143^{\circ}$ (Found: C, 43.65; H, 2.9; S, 8.1. $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{OS}$ requires $\mathrm{C}, 43.45 ; \mathrm{H}, 2.6 ; \mathrm{S}, 8.3 \%$) ; $\tau 1.95-2.78(\mathrm{~m}, 8$ aromatic H), and $\tau_{\mathrm{A}} 3.94, \tau_{\mathrm{B}} 4.49$ (AB system, $J_{\mathrm{AB}} 9.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{Br} \cdot \mathrm{CH}_{\mathrm{B}} \mathrm{Br}\right)$.
cis-10,11-Dibromo-10,11-dihydrodibenzo[b,f]thiepin 5,5-

[^4]Dioxide (8).-Peroxylauric acid ${ }^{9}$ (216 mg) was added to a solution of the cis-dibromide (4) (125 mg) in dichloromethane $(5 \mathrm{ml})$ and the solution was left overnight. Recrystallisation of the product from ethanol-chloroform gave the sulphone (8), m.p. 206-208 ${ }^{\circ}$, identical (m.p., i.r. spectrum) with a sample prepared ${ }^{2}$ from the sulphone (2) and bromine in carbon tetrachloride; $\tau 1.81(\mathrm{q}, J 1.5,8 \mathrm{~Hz}$, $4-\mathrm{H}$ and $6-\mathrm{H}$), $2 \cdot 10-3 \cdot 10(\mathrm{~m}, 6$ aromatic H$)$, and $3 \cdot 24(\mathrm{~s}$, $\mathrm{CHBr} \cdot \mathrm{CHBr})$.
trans-10,11-Dibromo-10,11-dihydrodibenzo[b,f]thiepin 5,5Dioxide (9).-Similarly, oxidation of the trans-dibromodibenzothiepin (5) with an excess of peroxylauric acid ${ }^{9}$ gave the corresponding sulphone (9) as prisms, m.p. 170-172 ${ }^{\circ}$ (from ethanol) (Found: C, $\mathbf{4 2 \cdot 0} \mathbf{~ H}, 2.65 ; \mathrm{S}, 7.8 . \mathrm{C}_{14} \mathrm{H}_{10}{ }^{-}$ $\mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires C, $41.8 ; \mathrm{H}, 2.5 ; \mathrm{S}, 8.0 \%$) ; $\tau 1.99(\mathrm{q}, J$ $7 \cdot 5,2 \cdot 0 \mathrm{~Hz}, 4-\mathrm{H}$ and $6-\mathrm{H}), 2 \cdot 23(\mathrm{q}, J 7.0$ and $1.5 \mathrm{~Hz}, 1-\mathrm{H}$ and $9-\mathrm{H}$), $2.35-2.60(\mathrm{~m}, 4$ aromatic H), and 3.52 ($\mathrm{s}, \mathrm{CHBr}$. $\mathrm{CHBr})$.

10-Bromodibenzo[b,f]thiepin (1).-A solution of the transdibromide (5) $(1.5 \mathrm{~g})$ in t-butyl alcohol (30 ml) containing potassium t-butoxide $(0.72 \mathrm{~g})$ was heated (1 h) under reflux. The mixture was poured into water and the product extracted into chloroform. Chromatography on silica followed by crystallisation from hexane gave the bromothiepin (1) $(0.8 \mathrm{~g}, 68 \%)$ as plates, m.p. $94-96^{\circ}$ (Found: C, 58.3 ; H, 3.25; Br, 26.7 ; S, 10.4%; $M, 288.290 . \mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrS}$ requires $\mathrm{C}, 58.2 ; \mathrm{H}, \mathbf{3} 1 \mathrm{l} ; \mathrm{Br}, 27.65 ; \mathrm{S}, 11 \cdot 1 \% ; M, 288 \cdot 290)$; $\tau 2.05-2.30(\mathrm{~m}, 8$ aromatic H$)$ and $2.20\left(\mathrm{~s},=\mathrm{CH}^{-}\right)$.

Reaction of trans-10,11-Dibromo-10,11-dihydrodibenzo[b,f]thiepin (5) with Sodium Methoxide.-The trans-dibromide (5) $(4.3 \mathrm{~g})$ was heated (15 min) under reflux in methanolic sodium methoxide ($1 \mathrm{~N} ; 50 \mathrm{ml}$). The solution was evaporated, inorganic salts were removed by washing with water, and the residue was then chromatographed on silica gel with benzene as eluant. After the bromothiepin (1) $(1.6 \mathrm{~g}) \mathrm{had}$ been collected, later fractions gave thioxanthen-10-carbaldehyde dimethyl acetal (12) (0.8 g), as prisms, m.p. 86- 88° (from ether-hexane) (Found: $M, 272.0868 . \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}$ requires $M, 272.0872$); $\tau 2.32-2.91$ (m, 8 aromatic H), $5.45(\mathrm{~d}, J 8 \mathrm{~Hz}, 10-\mathrm{H}), 5.79(\mathrm{~d}, J 8 \mathrm{~Hz}, \mathrm{O} \cdot \mathrm{CH} \cdot \mathrm{O})$, and 6.87 (s, $2 \times \mathrm{OMe}$). Further elution gave 10,11-dihydro-10,11dimethoxydibenzo $[\mathrm{b}, \mathrm{f}]$ thiepin (13) (120 mg), prisms, m.p. $88-90^{\circ}$ (from n-hexane) (Found: $M, 272 \cdot 0868 . \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}$ requires $M, 272.0872$); $\tau 2.4-3.00(\mathrm{~m}, 8$ aromatic H$), 4.91$ ($\mathrm{s}, 10-\mathrm{H}$ and $11-\mathrm{H}$), and $6.51(\mathrm{~s}, 2 \times \mathrm{OMe})$. Oxidation of this product with peroxylauric acid gave a mixture of isomeric sulphoxides (14) as prisms, m.p. 143- 150° [Found: $m / e 287.0738 . \quad \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{~S}(M-1)$ requires $\left.m / e 287.0742\right]$;* $\tau 1.80-2 \cdot 80(\mathrm{~m}, 8$ aromatic H$), 4 \cdot 53[\mathrm{~s}, \mathrm{CH}(\mathrm{OMe}) \cdot \mathrm{CH}(\mathrm{OMe})$ of $c i s$-isomer], $\tau_{\mathrm{A}} 4.85$ and $\tau_{\mathrm{B}} 5.53$ [d, $J_{\mathrm{AB}} 8 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}}(\mathrm{OMe})$. $\mathrm{CH}_{\mathrm{B}}(\mathrm{OMe})$ of trans-isomer], and $6.40,6.48$, and 6.57 (s, OMe).

Thioxanthen-9-carbaldehyde (17).-On one occasion, attempted purification of an impure sample of the transdibromide (5) by chromatography on silica gel resulted in isolation of the aldehyde (17), which crystallised from etherhexane as needles, m.p. $97-100^{\circ}$ (Found: C, $73.8 ; \mathrm{H}$, $4 \cdot 2 ; \mathrm{S}, 14.7 \% ; M, 226 . \quad \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{OS}$ requires $\mathrm{C}, 74 \cdot 3 ; \mathrm{H}$, $4.45 ; \mathrm{S}, 14 \cdot 2 \% ; M, 226) ; \tau 0.60(\mathrm{~d}, J 2 \mathrm{~Hz}, \mathrm{CHO}), 2 \cdot 40-$ $2.90(\mathrm{~m}, 8$ aromatic H$)$, and $5.31(\mathrm{~d}, J 2 \mathrm{~Hz}, 10-\mathrm{H})$.

10,11-Dihydro-10-(4-methylphenyl)dibenzo $[\mathrm{b}, \mathrm{f}]$ thiepin (19).

[^5] Chem. Soc., 1955, 77, 4037.
-9-Hydroxymethylthioxanthen ${ }^{8}$ (18) (16.5 g) and toluene-p-sulphonic acid monohydrate ($82 \cdot 5 \mathrm{~g}$) were heated under reflux in toluene for 16 h and water was continuously removed by a Dean-Stark trap. The solution was extracted with alkali, washed with water, and evaporated, giving a mixture (12.1 g) of the dihydrothiepin derivative (19) and dibenzo[$b, f]$ thiepin (3). Treatment of the mixture with bromine in acetic acid gave a mixture of (19) and the trans-dibromide (5). Chromatography on silica gel (benz-ene-light petroleum as eluant) gave the dihydrothiepin derivative (19) as a pale yellow oil (6.6 g), b.p. $200-204^{\circ}$ at 0.2 mmHg (Found: $M, 302 \cdot 1124 . \mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~S}$ requires M, 302.1129); $\tau 2.45-3.25$ (m, 12 aromatic H), 5.38 (q, J 5.5 and $8.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{X}}$ of $\mathrm{ArCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \cdot \mathrm{CH}_{\mathrm{X}}$), and $7.75\left(\mathrm{~s}, \mathrm{ArCH}_{3}\right)$.

Oxidation of this product with formic acid (25 ml) and hydrogen peroxide ($3.1 \mathrm{ml} ; 30 \%$) at 40° gave the corresponding sulphone, which crystallised from ethanol as prisms, m.p. $162-165^{\circ}$ (Found: C, $75 \cdot 7 ; \mathrm{H}, 5 \cdot 2 \%$; M, 334. $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{SO}_{2}$ requires $\mathrm{C}, 75 \cdot 4 ; \mathrm{H}, 5 \cdot 4 \% ; M, 334$); $\tau 1.68-2.00(\mathrm{~m}, 4-\mathrm{H}$ and $6-\mathrm{H}), \tau_{\mathrm{A}} 5 \cdot 31, \tau_{\mathrm{B}} 5.75, \tau_{\mathrm{C}} 6.32$ (ABC system, $J_{\mathrm{AB}} 10, J_{\mathrm{BC}} 14, J_{\mathrm{AC}} 4 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{C}} \mathrm{H}_{\mathrm{B}} \cdot \mathrm{CH}_{\mathrm{A}}$), and $7 \cdot 70\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$.

We thank the Hungarian Academy of Sciences and Professor L. Farkas (Technical University, Budapest) for granting leave of absence to M. N.
[3/1143 Received, 4th June, 1973]

[^0]: \dagger Owing to some aromatic bromination, hydrogen bromide is always present when the solvent is $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. In acetic acid the product crystallises almost immediately and is therefore not subject to subsequent equilibration.
 \ddagger The fact that the cis-dibromide (4) is achiral and the transcompound (5) a racemic mixture has no direct relevance to the present discussion. Differentiation between the chiral and achiral species by partial dehydrobromination with a chiral base (e.g. brucine, ref. 5) failed with compounds (4) and (5). The argument used also assumes rapid interconversion, on the n.m.r. time scale, of equivalent twist-boat conformations [see (10)]. This is justified on the basis of the observed n.m.r. spectra.

[^1]: ${ }^{1}$ M. Nógrádi, W. D. Ollis, and I. O. Sutherland, Chem. Comm., 1970, 158.
 ${ }^{2}$ W. Tochtermann, K. Oppenlander, and M. N. D. Hoang, Annalen, 1967, 701, 117.
 ${ }^{3}$ For reviews see R. C. Fahey, Topics Stereochem., 1968, 3. 237; T. G. Traylor, Accounts Chem. Res., 1969, 2, 152.
 ${ }^{4}$ J. A. Berson and R. Swidler, J. Amer. Chem. Soc., 1954, 76, 4060; V. Georgian, L. Georgian, and A. V. Robertson, Tetrahedron, 1963, 19, 1219; R. Huisgen and G. Boche, Tetrahedron Letters, 1965, 1769; R. Huisgen, G. Boche, W. Hechtl, and H. Huber, Angew. Chem. Internat. Edn., 1966, 5, 585; R. C. Fahey and C. Schubert, J. Amer. Chem. Soc., 1965, 87, 5172; M. C. Cabaleiro and M. D. Johnson, J. Chem. Soc. (B), 1967, 565 ; R. Huisgen, G. Boche, and H. Huber, J. Amer. Chem. Soc., 1967, 89, 3345; R. Huisgen, Atti Accad. naz. Lincei, 1968, 281; R. E. Singler and D. J. Cram, J. Amer. Chem. Soc., 1972, 94, 3512; R. Huisgen and J. Gasteiger, Angew. Chem. Internat. Edn., 1972, 11, 1104.
 ${ }^{5}$ S. J. Cristol, F. R. Stermitz, and P. S. Ramey, J. Amer. Chem. Soc., 1956, 78, 4939.

[^2]: * This compound was shown to be a mixture of cis- and transisomers by examination of the n.m.r. spectrum of the corresponding sulphoxides.

[^3]: - M. P. Cava, R. Pohlke, B. W. Erickson, and G. Fraenkel, Tetrahedron, 1962, 18, 1005; M. Avram, I. G. Dinulescu, D. Dinu, G. Mateescu, and C. D. Nenitzescu, Tetrahedron, 1963, 19, 309.
 ${ }^{7}$ P. M. G. Bavin, K. D. Bartle, and D. W. Jones, J. Hetcrocyclic Chem., 1968, 5, 327.

[^4]: - This compound did not give a molecular ion in the mass spectrum.

[^5]: ${ }^{8}$ M. M. Urberg and E. T. Kaiser, J. Amer. Chem. Soc., 1967, 89, 5931.
 W. E. Parker, C. Ricciuti, C. L. Ogg, and D. Swern, J. Amer.

